Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction.
نویسندگان
چکیده
Oxidative stress is implicated in neuronal apoptosis that occurs in physiological settings and in neurodegenerative disorders. Superoxide anion radical, produced during mitochondrial respiration, is involved in the generation of several potentially damaging reactive oxygen species including peroxynitrite. To examine directly the role of superoxide and peroxynitrite in neuronal apoptosis, we generated neural cell lines and transgenic mice that overexpress human mitochondrial manganese superoxide dismutase (MnSOD). In cultured pheochromocytoma PC6 cells, overexpression of mitochondria-localized MnSOD prevented apoptosis induced by Fe2+, amyloid beta-peptide (Abeta), and nitric oxide-generating agents. Accumulations of peroxynitrite, nitrated proteins, and the membrane lipid peroxidation product 4-hydroxynonenal (HNE) after exposure to the apoptotic insults were markedly attenuated in cells expressing MnSOD. Glutathione peroxidase activity levels were increased in cells overexpressing MnSOD, suggesting a compensatory response to increased H2O2 levels. The peroxynitrite scavenger uric acid and the antioxidants propyl gallate and glutathione prevented apoptosis induced by each apoptotic insult, suggesting central roles for peroxynitrite and membrane lipid peroxidation in oxidative stress-induced apoptosis. Apoptotic insults decreased mitochondrial transmembrane potential and energy charge in control cells but not in cells overexpressing MnSOD, and cyclosporin A and caspase inhibitors protected cells against apoptosis, demonstrating roles for mitochondrial alterations and caspase activation in the apoptotic process. Membrane lipid peroxidation, protein nitration, and neuronal death after focal cerebral ischemia were significantly reduced in transgenic mice overexpressing human MnSOD. The data suggest that mitochondrial superoxide accumulation and consequent peroxynitrite production and mitochondrial dysfunction play pivotal roles in neuronal apoptosis induced by diverse insults in cell culture and in vivo.
منابع مشابه
Oxidative and nitrosative stress in acute renal ischemia.
Generation of reactive oxygen species and nitric oxide in hypoxia-reperfusion injury may form a cytotoxic metabolite, peroxynitrite, which is capable of causing lipid peroxidation and DNA damage. This study was designed to examine the contribution of oxidative and nitrosative stress to the renal damage in ischemic acute renal failure (iARF). iARF was initiated in rats by 45-min renal artery cla...
متن کاملOverexpression of mitochondrial manganese superoxide dismutase protects against radiation-induced cell death in the human hepatocellular carcinoma cell line HLE.
We investigated the potential role of mitochondrial manganese superoxide dismutase (Mn-SOD) in protective activity against irradiation by analyzing cell viability by a colony formation assay and by detecting apoptosis in stably human Mn-SOD gene-transfected HLE, a hepatocellular carcinoma cell line. We found that overexpression of Mn-SOD reduced the levels of reactive oxygen species in the mito...
متن کاملIron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis.
Previous phenotyping of glucose homeostasis and insulin secretion in a mouse model of hereditary hemochromatosis (Hfe(-/-)) and iron overload suggested mitochondrial dysfunction. Mitochondria from Hfe(-/-) mouse liver exhibited decreased respiratory capacity and increased lipid peroxidation. Although the cytosol contained excess iron, Hfe(-/-) mitochondria contained normal iron but decreased co...
متن کاملBrain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice
Oxidative stress is believed to greatly contribute to the pathogenesis of various diseases, including neurodegeneration. Impairment of mitochondrial energy production and increased mitochondrial oxidative damage are considered early pathological events that lead to neurodegeneration. Manganese superoxide dismutase (Mn-SOD, SOD2) is a mitochondrial antioxidant enzyme that converts toxic superoxi...
متن کاملHesperidin pre-treatment attenuates NO-mediated cerebral ischemic reperfusion injury and memory dysfunction.
The present study was designed to explore the mechanism of hesperidin action via the nitric oxide pathway in the protection against ischemic reperfusion cerebral injury-induced memory dysfunction. Male Wistar rats (200-220 g) were subjected to bilateral carotid artery occlusion for 30 min followed by 24 h reperfusion. Hesperidin (50 and 100 mg/kg, po) pretreatment was given for 7 days before an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 2 شماره
صفحات -
تاریخ انتشار 1998